Nuevos pasos en Europa para investigar pirógenos sin animales

Un artículo científico resume las distintas conclusiones de una conferencia liderada por la EDQM (European Directorate for the Quality of Medecines & Health Care) y confirma la senda trazada para eliminar completamente los ensayos de conejos.

11 Octubre 2023

Foto: iStock

Poco a poco, pero afortunadamente las alternativas a la experimentación con animales se abren paso en Europa. Prueba de ello fue la conferencia celebrada en febrero, “The future of pyrogenicity testing: Phasing out the rabbit pyrogen test”, que ahora mismo se ha plasmado en un informe publicado en la revista Biologicals.

El evento, que transcurrió en dos jornadas, fue organizado en conjunto por la EDQM (la Farmacopea Europea), la Asociación Europea para las Alternativas a la Experimentación con Animales (European Partnership for Alternative Approaches to Animal Testing (EPAA) y el Consejo. Incluyó varios debates y ponencias por parte de ejecutivos de instituciones continentales, así como de investigadores de Alemania, Francia, Bélgica, Canadá, China, Japón, India o Brasil.

El motivo principal del acto fue el de constatar los importantes pasos que se han hecho para erradicar las pruebas de conejos, fomentar la cooperación entre actores, impulsar la formación de los científicos y detectar las flaquezas que impiden que el proceso de transición hacia los métodos alternativos fluya más rápidamente.

¿Qué son los pirógenos y cómo se detectan?

Se denominan pirógenos las sustancias o agentes vivos que actúan sobre el hipotálamo (porción del cerebro que entre otras funciones sirve como enlace entre los sistemas nervioso y endocrino) y producen un aumento de temperatura corporal (la fiebre). De forma mayoritaria pueden encontrarse estos tres tipos:

  • La Interleucina – 1: un tipo de citocina, o molécula señalizadora, producida cuando células como macrófagos o mastocitos del sistema inmune son activadas por un agente externo.
  •  Los liposacáridos: ubicados en la membrana exterior de las bacterias Gramnegativas, como son la Salmonella o Escherichia, distingidas de las otras por tener esta sustancia y otras diferentes.
  •  Y los distintos patógenos (virus o bacterias que causan una respuesta del sistema inmune que deriva en el mencionado incremento térmico).

Estos elementos pueden dividirse según sean endotoxinas o exotoxinas. Las primeras se hallan en la pared celular de diversas bacterias (como ya se mencionaron los lipopolisacáridos), mientras las segundas son sustancias secretadas por patógenos (como lo es la toxina Botulínica, o Botox, liberada por la especie Clostridium botulinum), que potencialmente pueden convertirse en muy dañinas para el conjunto del organismo.

El test en conejos

La ciencia respaldó siempre la investigación en este campo con las pruebas de conejos (Rabit pirogen test, por su denominación inglesa). Esta metodología comenzó a aplicarse en 1942. Se emplean para ella estos pacíficos mamíferos lagomorfos que son inmovilizados por el cuello, y sometidos a la inoculación de sustancias administradas por vía intravenosa, a través de la oreja. Se comprueba consiguientemente si hay reacción de fiebre en los conejos y se deduce de ahí si la dosis concreta puede constituir peligro para el organismo. Son ensayos que comportan agonía y sufrimientos muy notables a estos animales, y en gran parte de ocasiones finalizan con su muerte, bien por los daños causados o porque no pueden servir más a su propósito.

Científicamente hablando, estas pruebas, que no fueron nunca validadas, tienen dos lagunas claras. La primera es la imposibilidad de profundizar más en los detalles a nivel  cualitativo, relativos a los tipos de pirógenos que se detectan. La segunda es la evidente diferencia metabólica entre un ser humano y un conejo, que viene a ser casi igual a comparar coles con peras, de ahí los múltiples problemas detectados en estadios posteriores, en la inyección de vacunas, la administración de fármacos o la colocación de ciertas prótesis a humanos.

Las alternativas

Por todo ello, y la mayor conciencia a nivel ético de la ciudadanía, se encuentran ya disponibles otros métodos alternativos validados. El primero, el LAL (Lysate Amebocyte Limolus) que es usado desde 1977, y cuestionado pues se basa en la extracción de sangre del cangrejo herradura del atlántico (Limulus polyphemus) de la cual se aprovechan los distintos amebocitos (células fagocitarias presentes en los invertebrados) que se activan ante las endotoxinas. Derivado de este, y desde 2004 en adelante funciona el llamado rFC (o factor C recombinante) consistente en proteínas producidas a partir de la ingeniería genética, que poseen igualmente la capacidad de detectar únicamente endotoxinas.

Pero el más completo y menos invasivo es sin duda el MAT (Monocyte Activation Test), validado por la ECVAM (European Center for the Validation of Alternative Methods) en el año 2006, incluído el 2008 en la FDA (Food and Drug Administration) americana e insterado el 2009 en el capítulo 2.6.30 de la Farmacopea Europea. Se basa en preparados in vitro de monocitos que provienen de sangre humana y líneas celulares cultivadas. A parte de resultar sumamente preciso tiene la capacidad de identificar de igual forma tanto a las endotoxinas como a las exotoxinas.

¿Fin de los ensayos de conejos: 2026?

A pesar del desarrollo de estas pruebas más éticas y robustas, el descenso en los ensayos de animales no ha sido hasta ahora el deseado. En el 2015 unos 50.000 conejos se utilizaban aún en la Unión Europea en 14 estados miembro. Desde entonces el empleo de este método ha bajado un 50% y ha quedado concentrado en 10 países, entre los cuales España, que usa más de 8.000 animales cada año.

En 2021 la Farmacopea Europea (EDQM) tomó el compromiso de poner fin a este experimento en 5 años (2026). Publicó para ello (2022) la Estrategia de Pirógenos (New Pyrogenicity Strategy), que prevé redactar un nuevo capítulo para dichas sustancias (5.1.13) y suprimir los ensayos de conejos en más de 60 textos. Las principales dificultades para llegar a este punto tan deseado son el precio, la disponibilidad de los sistemas (kids) de MAT, y la aún escasa colaboración y formación que existe entre la ciencia y las diferentes instituciones. Este acto, y el artículo que ha derivado, tratan de solucionar estas carencias, y avanzar para que Europa finalmente lidere este cambio y pueda empujar a su turno a otros países que presentan más retraso, consolidando un modelo más fiable para la salud humana, y respetuoso, de una vez por todas, con los animales.

  Enlaces de interés:     

Carta abierta de Ong ADDA y varios lobbys europeos a la UE para defender la prohibición de las pruebas con animales

2 de diciembre 2020

Cruelty Free Europe, grupo de presión contra la experimentación con animales del que forma parte ONG ADDA, la organización internacional PETA y más de 450 marcas y empresas libres de crueldad que trabajan hacia el cambio normativo, incluidas Dove, Simple o The Body Shop, entre otras, han enviado una carta abierta al Parlamento Europeo, a la Comisión Europea y al Consejo de Europa. El objetivo es defender las prohibiciones de pruebas y de comercio con animales incluidas en el vigente Reglamento de Cosméticos de la UE. Un reglamento que, con la última modificación de 2013, establecía un precedente ejemplar para garantizar la seguridad de sus productos sin tener que someter a los animales a pruebas crueles. Ahora esta legislación lograda con un amplio consenso está en peligro por los recientes pronunciamientos de la Agencia Europea de Productos Químicos (ECHA), que abre la puerta a probar, también en animales, todos aquellos ingredientes presentes en los cosméticos que puedan suponer un cierto riesgo por la seguridad de empleados y de consumidores.

La carta reprocha a la Comisión Europea y a la Agencia Europea de Productos Químicos de haberse desvirtuado la normativa establecida, con la única excusa de garantizar las estrictas medidas de seguridad del Reglamento de Registro, Evaluación, Autorización y Restricción de productos Químicos (REACH). Un registro de auditoría que deben seguir todos los fabricantes por motivos de prevención, y que hasta ahora prohibía, en el caso de los cosméticos, las pruebas con animales. Unos experimentos que ahora pueden volver a sufrir miles de ratas y conejos, también aquellos animales gestantes, condenados a alimentarse por fuerza con un ingrediente cosmético antes de ser asesinados y diseccionados.

«La prueba de productos de belleza y sus ingredientes en animales es fea y punto», dice la doctora Julia Baines, responsable de políticas científicas de PETA. «PETA une esfuerzos con empresas compasivas para exigir un enfoque amable de las pruebas cosméticas no condene la vida de animales sensibles y que implique sólo tests alternativos, tal como exige la ley«.

La directora de Asuntos Públicos de Cruelty Free Europe, Kerry Postlewhite asegura que: «Los ciudadanos europeos y sus representantes en el Parlamento Europeo lucharon duramente por estas prohibiciones, que han sido un modelo para muchos otros mercados. Hay que mantener pues lo que estaba previsto para evitar el sufrimiento innecesario de animales en pruebas de cosméticos «.

La carta constata también como el mundo se aleja progresivamente de la experimentación con animales. En 2018, el Parlamento Europeo pidió la prohibición mundial de este tipo de tests en cosméticos para el año 2023. Por otra parte, en una reciente encuesta europea de ámbito global, un 84% de los encuestados dijo que no compraría ningún producto cosmético si supiera que se había probado previamente en animales.

La carta, a la que apoyan también organizaciones de peso como Eurogroup for Animals o Humane Society International, se reproduce íntegramente en el documento adjunto.

Ong ADDA, decana en España en la Defensa de los Animales, fundada en 1976 y que desde sus inicios ha estado trabajando intensamente, durante años, con los grupos europeos hasta el logro del fin de los experimentos en los productos cosméticos, considera un atraso intolerable y vergonzoso esta tentativa por parte de la industria química.

Leer carta

Los experimentos con animales y la COVID-19

Introducción

Investigadores de todo el mundo están compitiendo por probar una posible vacuna contra el nuevo coronavirus o COVID-19, que en el mes de junio del 2020 ya había infectado a 7,2 millones de personas en todo el mundo y matado a más de 408 000.[1]

Lamentablemente, este proceso implica una cantidad significativa de pruebas con animales que se llevan a cabo en una variedad de especies, incluidos ratones, ratas, hámsteres, gatos, conejillos de indias, hurones y primates. A medida que los investigadores y los países compiten por conseguir una vacuna o un tratamiento, se pueden seguir repitiendo las mismas pruebas o similares en animales, lo que provoca un incremento de sufrimiento.

Existe el riesgo real de que, en lugar de ayudarnos, estos ensayos basados en animales induzcan a error a los investigadores: buenas vacunas o tratamientos pueden ser descartados por ineficaces mientras que otras vacunas potencialmente dañinas pero respaldadas por ensayos con animales poco fiables pueden pasar a los ensayos en humanos.

Ahora, tal vez más que nunca, resulta de vital importancia que consideremos la calidad y la humanidad de nuestra ciencia y continuar trabajando para progresar en el desarrollo de métodos más avanzados y sin animales.

Deseamos disponer de una vacuna segura y rápida para la COVID-19 utilizando métodos científicos alternativos, que estén directamente relacionados con la enfermedad de los humanos y que puedan suministrar al mercado vacunas y tratamientos más seguros y eficaces. Para ello, es necesaria la coordinación global, regional y nacional, así como una mayor financiación y apoyo en relación con estos métodos.


¿Cuál es la situación actual con una vacuna contra la COVID-19?

La secuencia genética del SARS-COV-2, el nuevo coronavirus que causa COVID-19, se publicó por primera vez el 11 de enero de 2020[2]. Actualmente se están desarrollando más de 130 vacunas potenciales contra la COVID-19 en todo el mundo[3]. La mayoría de estas vacunas se encuentran en las primeras etapas de las pruebas, que normalmente involucran a los animales.

Hasta la fecha, diez de estas vacunas se están probando actualmente en seres humanos: cinco fabricadas en China, tres en Estados Unidos, una en el Reino Unido y otra en Alemania, y otros países pronto los seguirán.

Algunas de las vacunas más prometedoras se han desarrollado utilizando una tecnología que nunca antes había sido utilizada en una vacuna aprobada.

Por ejemplo, una de las pioneras es la empresa estadounidense Moderna, cuya vacuna aparentemente ha sido capaz de saltarse algunos de los ensayos habituales en animales y pasar rápidamente a los ensayos en humanos debido a la nueva forma en que se ha producido. En lugar del método tradicional de inyectar a las personas una versión inactivada o debilitada de un virus, los científicos de Moderna han descubierto una manera de diseñar e inyectar las instrucciones moleculares necesarias para hacer que la proteína que se encuentra en la superficie del virus se introduzca directamente en el cuerpo humano[4]. Esto desencadena una respuesta inmune similar a las vacunas tradicionales, siendo potencialmente más segura y también evitando el costoso y largo proceso de producción. La vacuna mRNA-1273 de Moderna fue la primera en comenzar los ensayos en humanos de fase 1 el 16 de marzo de 2020, aparentemente después de un solo ensayo en ratones que recibieron una vacuna experimental para el MERS (un coronavirus relacionado) que se produjo de la misma manera[5] .

La vacuna de la Universidad de Oxford, originalmente llamada ChAdOx-1-S, también es una de las favoritas después de mostrar resultados prometedores en los ensayos con monos. La vacuna está hecha de una versión debilitada de otro virus (adenovirus) que causa síntomas de resfriado y gripe en los chimpancés[6]. Recibió 90 millones de libras esterlinas de fondos del Gobierno y ahora se encuentra en ensayos clínicos de fase 1[7]. AstraZeneca anunció recientemente un acuerdo de 1200 millones de dólares con el Gobierno de Estados Unidos para producir 400 millones de dosis de la vacuna, ahora renombrada AZD1222, si resulta efectiva[8] .

Otros de los principales competidores son dos vacunas de las empresas chinas CanSino Biological y SinoVac, las cuales están siendo sometidas a pruebas en humanos después de los resultados prometedores en un estudio humano de fase 1 y un estudio de monos, respectivamente (ver más abajo)[9] .

Muchos expertos han afirmado que una vacuna tardará entre 12 y 18 meses en desarrollarse y, por lo tanto, se podría esperar que esté disponible en algún momento de 2021[10]. Sin embargo, la historia nos dice que esto es poco probable. Generalmente, una vacuna tarda un promedio de entre 15 y 20 años en pasar de una idea a un producto aprobado[11]. La vacuna más rápida jamás desarrollada fue para las paperas, con la que tardaron cuatro años[12]. Incluso con los programas de desarrollo acelerado (como lo que estamos viendo ahora), acaba de ser aprobada en diciembre de 2019 por la Administración de Alimentos y Medicamentos de los Estados Unidos (FDA, por sus datos) una vacuna contra el ébola cinco años después del brote de 2014[13].

Lamentablemente, no hay garantías de llegar a conseguir una vacuna para la COVID-19. El virus del dengue se identificó en 1943, pero la primera vacuna fue aprobada en 2019[14]. Y, a pesar de décadas de ensayos, todavía no tenemos vacuna contra el VIH como tampoco hay una vacuna aprobada para otros brotes recientes como el MERS y el SARS (ambos también coronavirus), y tampoco para el zika.

Solo alrededor del 6 % de las potenciales vacunas llegan al mercado[15]. Los fallos generalmente son debidos a problemas de seguridad o simplemente porque la vacuna no funcionó en los humanos. Por ejemplo, en un ensayo humano se encontró que una vacuna contra el virus respiratorio SARS hacía que las personas fueran aún más susceptibles a la enfermedad[16].

Existe también la preocupación de que, con una posible disminución de casos de COVID-19 no hubiera la cantidad suficiente de personas en las que probar la vacuna[17]. Por ejemplo, a pesar de los grandes esfuerzos y fondos económicos para desarrollar vacunas para el MERS y el SARS al principio de sus epidemias, se perdió el impulso a medida que los brotes disminuyeron, y los ensayos de vacunas fueron finalmente abandonados[18].

¿Qué pruebas con animales se están realizando?

Resulta preocupante la cantidad de ensayos con animales que se están realizando en todo el mundo: en EE. UU., China, Canadá, Australia y en toda Europa, con monos, hámsteres, hurones, ratones y gatos.

Es imposible dar cifras sobre el número de animales que se están utilizando porque estos no se publican regularmente, y ciertamente no en relación con la COVID-19. Sin embargo, la investigación de Cruelty Free International acaba de demostrar que anualmente se utilizan en pruebas casi 200 millones de animales en todo el mundo, incluyendo 207 724 pruebas con perros y 158 780 con monos[19].

Se están utilizando animales en ensayos reglamentarios para ver si las nuevas vacunas para la COVID-19 son seguras. En estos ensayos, a los animales se les inyecta —o son obligados a inhalar— la vacuna, casi siempre en dosis muy superiores a las que los seres humanos se les administraría, observando si enferman entre los 28 y 90 días antes de matarlos, para examinar los daños causados en sus órganos.

También se realizan ensayos para ver si la vacuna funciona, es decir, si se puede prevenir o reducir la infección. En estas pruebas, se vacuna a los animales y luego se les infecta con el virus COVID-19. Veamos un ejemplo.

Estudio de la vacuna Oxford (Reino Unido)[20]

Se inyectó la vacuna a seis macacos Rhesus antes de ser expuestos al virus COVID-19. Otro grupo de control de tres monos sin vacunar también estuvo expuesto al virus. Todos ellos fueron monitoreados durante 7 días en busca de signos de infección antes de ser matados y diseccionados.

Al final del estudio, los nueve monos dieron positivo con relación al virus, significando que la vacuna no pudo evitar que los animales vacunados se infectaran y, por lo tanto, no sería probable que pudieran detener la propagación a otros. Tres de los monos vacunados y también el resto de los monos de control sufrieron alteraciones respiratorias debido a la infección. No obstante, dado que se encontró que los monos vacunados presentaban síntomas menos graves en general, como por ejemplo, ningún signo de neumonía, la vacuna pasó a los ensayos en humanos4.

Sinovac Biotech (China): estudio de la vacuna[21]

Se inyectaron dos dosis diferentes de la vacuna a diez macacos Rhesus tres veces durante un período de dos semanas. Luego el virus COVID-19 se inyectó directamente en sus pulmones a través de un tubo por la tráquea. Otro grupo de control de cinco macacos no vacunados también fue infectado con el virus.

Siete días después, fueron sacrificados y diseccionados. Todos los monos no vacunados desarrollaron una neumonía grave antes de esto. Si bien no se detectó ningún virus en los órganos de los monos a los que se les administró la dosis más alta de la vacuna, los que fueron vacunados con una dosis más baja sí que mostraron algunos signos de infección. No obstante, los investigadores se refirieron a esto como un blip viral (aumento transitorio de la carga viral), trasladando la vacuna a los ensayos en humanos.

Además del desarrollo de vacunas, los animales también se están utilizando en experimentos de posibles tratamientos de anticuerpos y antivirales para las personas infectadas con la Covid-19, y en proyectos de investigación básica destinados a encontrar las especies más susceptibles (que puedan utilizarse en futuras investigaciones o pruebas reglamentarias) o para tratar de entender cómo el virus causa la infección.

Asimismo, se están estudiando los medicamentos existentes para ver si pueden ser reutilizados como tratamientos en los pacientes de la COVID-19. Aunque muchos de estos fármacos, incluida la hidroxicloroquina contra la malaria, ya habían pasado con anterioridad las pruebas de seguridad en ensayos con animales, pueden volver a realizarse pruebas adicionales para tratar de demostrar que estos fármacos resultan aptos para tratar la COVID-19[22].

Científicos en China también llevaron a cabo una serie de experimentos en perros, gatos, hurones, patos, cerdos y pollos para determinar qué especies podrían estar infectadas con COVID-19[23].

La mayoría de los experimentos consistieron en inyectar el virus en las fosas nasales de los animales y mantenerlos aislados en jaulas para tomar muestras nasales y rectales antes de matarlos y diseccionarlos. Concluyeron que los hurones y los gatos son los más susceptibles al virus de la COVID-19, aunque no desarrollan los mismos síntomas que los humanos, mientras que los perros, cerdos, patos y pollos no se infectan fácilmente con el virus.

Otro grupo de investigadores chinos infectó a los hámsteres con COVID-19, informando que desarrollaron signos de la enfermedad, incluida la pérdida de peso y la respiración acelerada[24].

Una compañía con sede en EE. UU. llamada Emergent BioSolutions está utilizando caballos para producir un fármaco a base de anticuerpos para tratar la COVID-19[25]. Debido a su tamaño, los caballos se utilizan a menudo como fábricas de plasma y anticuerpos, y son desangrados regularmente para este propósito5.

¿Cuáles son los problemas científicos con la utilización de animales para la investigación de la COVID-19?

La historia nos ha demostrado que las pruebas en animales no predicen lo que sucederá en los seres humanos. Los animales no son minihumanos: a menudo, no sufren la misma enfermedad que nosotros y responden de manera diferente a los fármacos.

Más del 90 % de los nuevos medicamentos que parecen ser seguros y eficaces en animales fracasan en los ensayos clínicos en humanos[26]. También hay evidencias específicas con las vacunas. Se está buscando una vacuna contra el VIH/sida desde hace más de tres décadas, sin éxito hasta la fecha, a pesar de realizarse cientos de ensayos clínicos sobre docenas de tipos de vacunas que parecían ser prometedoras en los primates.

Los investigadores de todo el mundo están luchando para encontrar el modelo animal perfecto de COVID-19, pero aún no lo han encontrado. Los típicos animales de laboratorio, como ratones, ratas y perros, no son tan susceptibles al virus como los humanos. Incluso los monos, considerados la especie más similar a nosotros, no desarrollan los síntomas más graves que la COVID-19 causa en los seres humanos[27]. Sin embargo, se continúan utilizando animales a pesar de no poder proporcionar respuestas claras.

Los ratones modificados genéticamente que prometían ser la solución no han tenido ningún efecto hasta ahora. Cuando los ratones no modificados genéticamente fueron infectados con la COVID-19, no sucedió nada (resultaban difíciles de infectar con éxito), por lo que algunos científicos recurrieron al antiguo modelo de ratón modificado genéticamente creado años atrás cuando se produjo el brote de SARS: lo criaron en gran número con la esperanza de que resultaran útiles después de realizar algunos ajustes genéticos[28]. Sin embargo, la COVID-19 solo provocó enfermedades leves en esos ratones.

Cabe señalar que ninguno de los pioneros en la carrera de vacunas contra la COVID-19 ha superado las primeras etapas de ensayos con gran éxito. Como se ha mencionado anteriormente, la vacuna Oxford no pudo prevenir la infección en monos, aunque sí redujo el desarrollo de síntomas graves, y la vacuna Sinovac tan solo proporcionó una protección parcial en monos después de ser probada en ratones y ratas. Incluso la vacuna Moderna provocó reacciones negativas secundarias en los voluntarios humanos durante los ensayos en fase 1, incluidas náuseas y fiebre alta[29], mientras que la vacuna de CanSino causó fiebre grave en el 8 % de sus participantes en el ensayo[30].

Todo esto plantea la cuestión de si los animales son realmente útiles para ofrecer información en el desarrollo de vacunas (y otros medicamentos), especialmente en situaciones en las que, a pesar de los resultados decepcionantes o ambiguos de los ensayos con animales, se continúa con la fase siguiente de ensayos en humanos. Posiblemente los investigadores, dependiendo de la situación, parecen elegir en qué datos quieren centrarse y qué prefieren ignorar. De hecho, un reciente taller sobre COVID-19, celebrado por la Coalición Internacional de Autoridades Reguladoras de Medicamentos (ICMRA), concluyó que las pruebas de eficacia en «modelos de animal» (en que los animales son infectados con el virus después de ser vacunados para averiguar si la vacuna funciona) no son realmente necesarias para pasar a la fase de los ensayos en humanos[31]. ¡Sin embargo, todavía continúan llevándose a cabo!6

¿Cuáles son las alternativas al uso de animales?

Reemplazar las pruebas en animales no significa poner en riesgo a los pacientes humanos. Tampoco significa detener el progreso de la medicina. En cambio, reemplazar las pruebas con animales mejoraría la calidad y la humanidad de nuestra ciencia.

Afortunadamente, el desarrollo de métodos alternativos está creciendo. Debido a las innovaciones de la ciencia, las pruebas en animales ya están siendo reemplazadas en áreas como las pruebas de toxicidad y el desarrollo de fármacos. Pero queda mucho por hacer.

Las razones por las que persiste la experimentación en animales con frecuencia no son científicas. En cambio, sí que pueden ser debidas al conservadurismo existente dentro de la comunidad científica: resulta más fácil y más cómodo seguir haciendo lo que siempre se ha hecho. Los resultados de las pruebas en animales son fáciles y cómodos de comparar con ensayos anteriores, dando sensación de seguridad a los investigadores. También permite a los organismos reguladores aplicar el criterio de llenar la casilla de verificación en los formularios, aunque se encuentre disociada de las necesidades del mundo real.

Tanto los organoides (pequeños órganos)[32] y los sistemas microfisiológicos[33], es decir, las tecnologías de cuerpo/órgano en chip, son métodos relevantes para el ser humano, que están proporcionando modelos más realistas para probar nuevas terapias. En la actualidad, ambos métodos se utilizan con células inmunitarias añadidas, resultando particularmente apropiado para el desarrollo de vacunas, y también puede exponerse a los anticuerpos, o al suero de personas infectadas o vacunadas para probar la eficacia.

Un equipo español ya ha demostrado que el SARS-COV-2 puede infectar los vasos sanguíneos humanos creados mediante ingeniería celular y los organoides renales, y que una enzima humana la puede inhibir, lo que promete un posible tratamiento[34].

Los ganglios linfáticos humanos artificiales cultivados en 3D[35] se han creado para modelar la inmunidad innata y adaptativa, y se han utilizado en la evaluación de las vacunas contra la gripe. También se ha desarrollado un modelo 3D de células de vías respiratorias humanas que se puede usar para evaluar el efecto de posibles fármacos en el sistema respiratorio humano.

Los estudios en voluntarios humanos sanos e infectados también son clave. Por ejemplo, los estudios en humanos han demostrado que las respuestas de anticuerpos a la infección por COVID-19 son a menudo débiles o disminuyen relativamente rápido, permitiendo la reinfección de un individuo previamente infectado[36]. Los estudios en humanos también mostraron que algunos de los anticuerpos contra el SARS previenen la infección, y algunos de estos reaccionan de forma cruzada a la COVID-19, lo cual resulta prometedor[37]. También se pueden usar cultivos de líquido pulmonar y muestras de biopsia de pacientes para estudiar el genoma del virus e investigar el daño del tejido pulmonar. Las vacunas pasivas también se están investigando, inyectando anticuerpos contra el virus en los pacientes, ya sea de los supervivientes de la COVID-19 o producidos in vitro (basada en células)[38].

Las técnicas avanzadas igualmente incluyen el modelo matemático de las tasas de transmisión e infección, que han demostrado ser vitales para nuestra comprensión y control de la pandemia. Los programas informáticos también se están utilizando para detectar posibles candidatos a vacunas y medicamentos en función de sus propiedades químicas y estructurales o similitud con las terapias existentes.

Para más información contactar con info@crueltyfreeeurope.org.

[1] worldometers.info/coronavirus/

[2] nature.com/articles/d41573-020-00073-5

[3] who.int/who-documents-detail-redirect/draft-landscape-of-cov­id-19-candidate-vaccines

[4] allianceforscience.cornell.edu/blog/2020/06/what-are-the-top-5-most-promising-covid-19-vaccine-candidates/

[5] livescience.com/coronavirus-vaccine-trial-no-animal-testing.html

[6] news.sky.com/story/coronavirus-disappearing-so-fast-oxford-vaccine-has-only-50-chance-of-working-11993739

[7] dailymail.co.uk/sciencetech/article-8331709/Oxford-coronavi­rus-vaccine-does-not-stop-infection-experts-warn.html

[8] telegraph.co.uk/global-health/science-and-disease/cov­id-19-vaccine-latest-coronavirus-news-clinical-trial-update/

[9] nytimes.com/2020/04/27/world/europe/coronavirus-vac­cine-update-oxford.html

[10] telegraph.co.uk/global-health/science-and-disease/ox­ford-university-coronavirus-vaccine/

[11] businessinsider.com/coronavirus-vaccine-quest-18-months-fauci-experts-flag-dangers-testing-2020-4?r=US&IR=T

[12] theguardian.com/world/2020/may/22/why-we-might-not-get-a-coronavirus-vaccine

[13] Ibid 11.

[14] Ibid 12.

[15] journals.plos.org/plosone/article?id=10.1371/journal.pone.0057755

[16] https://www.medicalnewstoday.com/articles/scientist-warns-against-fast-tracking-covid-19-vaccine-trials#1-

[17] Ibid 6.

[18] Ibid 11.

[19] pubmed.ncbi.nlm.nih.gov/32090616/

[20] biorxiv.org/content/10.1101/2020.05.13.093195v1

[21]

[22] sciencemag.org/content/early/2020/05/06/science.abc1932

[23] contagionlive.com/news/20-drugs-evaluated-for-repur­pose-against-covid19-in-preclinical-testing-

[24] sciencemag.org/content/368/6494/1016

[25] sciencemag.org/news/2020/04/mice-hamsters-ferrets-mon­keys-which-lab-animals-can-help-defeat-new-coronavirus

[26] qz.com/1837094/how-lab-animals-are-helping-scientists-fight-covid-19/bio.org/sites/default/files/Clinical%20Develop­ment%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf

[27] sciencemag.org/news/2020/04/covid-19-vaccine-pro­tects-monkeys-new-coronavirus-chinese-biotech-reports

[28] Ibid 25.

[29] https://www.reuters.com/article/us-health-coronavi­rus-moderna/moderna-phase-1-results-show-coronavirus-vac­cine-safe-induces-immune-response-idUSKCN24F2SW

[30] https://www.businessinsider.com/china-says-coronavirus-vac­cine-is-a-global-public-good-2020-6

[31] ncbi.nlm.nih.gov/pmc/articles/PMC7245508/

[32] ncbi.nlm.nih.gov/pmc/articles/PMC5723307/

[33] sciencedirect.com/science/article/pii/S1359644618301582

[34] sciencedirect.com/science/article/pii/S0092867420303998

[35] sciencedirect.com/science/article/pii/S0168165610001082

[36] pubmed.ncbi.nlm.nih.gov/29182718/

[37] news-medical.net/news/20200504/Human-endemic-corona­virus-reinfection-possible-after-recovery.aspx

[38] biorxiv.org/content/10.1101/2020.05.14.095414v1.full.pdf

[39] sciencedaily.com/releases/2020/05/200512133753.htm

Identificado un fármaco en fase clínica capaz de bloquear los efectos de la Covid-19

En este estudio internacional han participado investigadores del Instituto de Bioingeniería de Catalunya

3 abril 2020

Investigadores del Institut de Bioenginyeria de Catalunya (IBEC) junto a un equipo internacional de científicos han identificado un fármaco que bloquea el virus SARS-CoV-2 en las primeras fases de la infección. Utilizando cultivos celulares y orgánulos, réplicas en miniatura de órganos reales desarrolladas a partir de células humanas, han comprobado que este fármaco es capaz de reducir hasta 5000 veces la cantidad de virus presente en el tejido.

Estos resultados prometedores, publicados en la revista Cell, han hecho que la compañía biotecnológica que ha desarrollado el fármaco, Apeiron Biologic, anunciara ya ayer que comenzará de manera inminente un ensayo clínico con 200 pacientes con fases avanzadas de Covid-19 en Europa.

El fármaco, llamado APN01, ya existía: había sido desarrollado para la epidemia de SARS del 2003, causada por un coronavirus muy similar al que está detrás de la actual pandemia de Covid-19, que hasta el 3 de abril ha provocado más de un millón de casos y ocasionado la muerte a más de 53.000 personas en todo el planeta. En 2003, el APN01 ya había sido probado en un ensayo clínico de fase I-II para comprobar su toxicidad y eficacia.

Este fármaco lo que hace es bloquear el mecanismo de entrada del virus en las células humanas. Este mecanismo fue descubierto por investigadores de la Universidad Columbia Británica (Canadá), coautores de este nuevo trabajo, que entonces hallaron que la proteína S del virus (dispuesta sobre la superficie y que le da el aspecto de corona) se une a un receptor de la célula humana llamado ACE2 (por sus siglas en inglés, enzima convertidora de angiotensina).

Ese receptor no está en todas las células humanas, sino que se expresa en pulmón, corazón, vasos sanguíneos, riñones e intestino, que son precisamente los tejidos afectados por la Covid-19.

Para comprobar si en este nuevo coronavirus, el SARS-CoV-2, éste era también el mecanismo de infección, los investigadores usaron muestras de tejidos de pacientes con Covid-19, a partir de las que aislaron e infectaron en el laboratorio células humanas y también, y ahí es donde entra el grupo de la investigadora Icrea Núria Montserrat del IBEC, orgánulos de riñón humanos.

El hecho de que el receptor ACE2 se exprese fuertemente en riñones y que se pueda hallar ARN del SARS-CoV-2 en la orina es lo que llevó a los investigadores a usar los orgánulos de riñón como modelo.

“Teníamos muchas preguntas acerca de cómo el virus entra en la célula, si utilizaba mecanismos distintos a la hora de infectar células de riñones, pulmones o corazón. Los orgánulos nos han permitido averiguar que el mecanismo es el mismo y probar una molécula en un contexto humano, porque son células humanas del propio tejido infectado de los pacientes, pero a una velocidad muy superior a la de un ensayo con personas”, explica a La Vanguardia Montserrat.

El fármaco solo se ha podido probar en las fases iniciales de la infección, porque los orgánulos solo se pueden mantener en cultivo como máximo 15 días, pero los investigadores confían en que el fármaco antiviral también podría ser eficaz en fases más avanzadas que, es de hecho, lo que tratará de probar el ensayo que comenzará en las próximas semanas en Europa.

El siguiente paso será, en lugar de infectar cultivos celulares y orgánulos con virus aislados de una muestra de pacientes, trabajar directamente con muestras de tejidos infectados. En este sentido, el IBEC colabora con el Hospital Clínic de Barcelona y otros centros españoles para obtener esas muestras de Covid-19.

También utilizarán los orgánulos para estudiar qué ocurre en personas diabéticas, que tienen un peor pronóstico, o en condiciones de hipoxia o falta de oxígeno, ocasionada por infecciones más agresivas. “Intentaremos ver si el fármaco funciona igual a igual dosis. Incluso podríamos intentar conectar los orgánulos de riñón, pulmón, para ver el efecto sistémico”, señala Montserrat.

Imagen de microscopía confocal de un organoide de riñón generado in vitro a partir de células madre pluripotentes humanas que han sido diferenciadas durante 20 días usando cultivos tridimendionales
Imagen de microscopía confocal de un organoide de riñón generado in vitro a partir de células madre pluripotentes humanas que han sido diferenciadas durante 20 días usando cultivos tridimendionales (IBEC)

Leer noticia: